

Magic Lenses and Two-Handed
Interaction

Spot the difference between
these examples and GUIs
 A student turns a page of a book while taking notes
 A driver changes gears while steering a car
 A recording engineer fades out the drums while bringing up the strings

 [Examples ref. Buxton]

2

Quick Motivation

 The desktop paradigm does not demand much
(physically) of its user.

 Then again, it doesn’t take advantage of the physical
abilities of the user either.

 Many tasks are handled more easily with multiple
hands.

3

Two-handed Interaction
 Not just two hands on a keyboard...

 Discrete actions from both hands (hitting keys)

 More often, either:
 Continuous action -- both hands in motion

 Compound action -- one hand moves to target and the other performs an
action

 Takes advantage of how we naturally work
 Drawing/drafting

 Lab work
 Surgeons, dentists, ...

 etc.

4

Quick Quiz
 What was the first use of two-handed input with a computer?

5

Quick Quiz
 What was the first use of two-handed input with a computer?

 Douglas Englebart in 1968
 Point with mouse

 Operate chord keyboard

6

Next Quiz
 Why has the PC so committed to having a single pointing device?

7

Next Quiz
 Why has the PC so committed to having a single pointing device?

 Lots of historical baggage
 Technical: Early systems couldn’t keep up with multiple continuous devices

 Experimental: Fitts Law has only two parameters, target distance and size;
performance studies typically focus on just a single hand

8

Lots of Recent Interest
 N. Matsushita, Y. Ayatsuka, J. Rekimoto. Dual touch: a two-handed interface for pen-based

PDAs. UIST 2000, pp. 211-212.
 Coordinated pen-and-thumb interaction without any additional technology on contact

closure PDA (e.g., Palm or PocketPC device).
 A GUI Paradigm Using Tablets, Two Hands and Transparency. G Fitzmaurice, T. Baudel, G.

Kurtenbach, B. Buxton. Alias/Wavefront, Toronto. CHI 97
 K. Hinckley, M. Czerwinski and M. Sinclair. Interaction and modeling techniques for desktop

two-handed input. UIST ’98 pp. 49-58.
 T. Grossman, G. Kurtenbach, G. Fitzmaurice, A. Khan, B. Buxton. Creating principle 3D curves

using digital tape drawing. CHI 2002
 S. Chatty. Extending a graphical toolkit for two-handed interaction. UIST ’94, pp. 195-204.
 MID: Multiple Input Devices

 http://www.cs.umd.edu/hcil/mid/

9

Toolglasses and Magic Lenses
 GUI interaction technique meant to capture a common metaphor for two-

handed interaction
 Basic idea:

 One hand moves the lens
 The other operates the cursor/pointer

 “See through” interfaces

 The lens can affect what is “below” it:

 Can change drawing parameters
 Change change input that happens “through” the lens

 For the purpose of this lecture, I’m combining both of these under the
term “magic lens”

10

Quick Examples
 Magnification (and arbitrary transforms)
 Render in wireframe/outline
 Object editing

 E.g., click-through buttons: position color palette over object, click through the
palette to assign the color to the object

 Important concept: lenses can be composed together
 E.g., stick an outline lens and a color palette lens together to change the color

of an object’s outline

 Second important concept: lenses don’t just have to operate on the final
rendered output of the objects below them
 Can take advantage of application data structures to change presentation and

semantics

11

12

Reading:
 Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton and Tony

D. DeRose, “Toolglass and magic lenses: the see-through
interface”, Proceedings of the 20th Annual Conference on
Computer Graphics, 1993, Pages 73-80.

http://www.acm.org/pubs/articles/proceedings/graph/166117/p73-bier/p73-bier.pdf

13

Note...

 These techniques are patented by Xerox

 Don’t know scope of patent, but its likely you would need to
license to use them commercially

14

Advantages of lenses

 In context interaction
 Little or no shift in focus of attention

 tool is at/near action point
 Alternate views in context and on demand

 can compare in context
 useful for “detail + context” visualization techniques

15

Detail + context visualization

 Broad category of information visualization techniques
 Present more detail in area of interest

 More than you could typically afford to show everywhere
 Details may be very targeted

 Present in context of larger visualization

16

Advantages of lenses

 Two handed interaction
 Structured well for 2 handed input

 non-dominant hand does coarse positioning (of the lens)
 examples also use scroll wheel with non-dominant hand

 scaling: again a coarse task

 dominant hand does fine work

17

Advantages of lenses

 Spatial modes
 Alternative to more traditional modes
 Use “where you click through” to establish meaning
 Typically has a clear affordance for the meaning

 lens provides a “place to put” this affordance (and other
things)

18

Examples

 Lots of possible uses, quite a few given in paper and video

 Property palettes
 Click through interaction
 Again: no context shift + spatial mode

19

Examples

 Clipboards
 Visible

 invisibility of typical clipboard is a problem
 Lots of interesting variations

 multiple clipboards
 “rubbings”

 Can do variations, because we have a place to represent them & can
do multiple specialized lenses

20

Examples

 Previewing lenses
 Very useful for what-if
 Can place controls for parameters on lens

 Selection tools
 Can filter out details and/or modify picture to make selection a

lot easier

21

Examples

 Grids
 Note that grids are aligned with respect to the object space not

the lens

Examples
 Debugging lenses

 Show hidden internal structure in a GUI

 Not just surface features

 “Debugging Lenses: A New Class of Transparent Tools for User Interface
Debugging,” Hudson, Rodenstein, Smith. UIST’97

22

23

Implementation of lenses

 Done in a shared memory system
 All “applications” are in one address space
 Can take advantage of application-internal data structures

 Different than OS-provided magnifying glass, for example
 Like one giant interactor tree
 Also assumes a common command language that all applications

respond to

24

Implementation of lenses

 Lens is an additional
object “over the top”
 Drawn last
 Can leave output from below and add to it (draw over top)
 Can completely overwrite output from below

 can do things like “draw behind”

Root

Lens
App

App

App

25

Implementation of lenses

 Input side
 Changed way they did input

 originally used simple top-down dispatch mechanisms
 now lens gets events first

 can modify (e.g., x,y) or consume

 possibly modified events then go back to root for “normal
dispatch

26

Implementation of lenses

 Input side
 Special mechanism to avoid sending events back to lens
 Also has mechanism for attaching “commands” to events

 assumes unified command lang

 command executed when event delivered

27

Implementation of lenses

 Output side
 Damage management

 Lenses need to be notified of all damage
 Lens may need to modify area due to manipulation of output

(e.g. mag)

28

Implementation of lenses

 Output side
 Redraw

 Several different types of lenses
 Ambush
 Model-in / model-out
 Reparameterize and clip

29

Types of lens drawing

 Ambush
 catch the low level drawing calls

 typically a wrapper around the equivalent of the Graphics
object

 and modify them
 e.g. turn all colors to “red”

 Works transparently across all apps
 But somewhat limited

30

Types of lens drawing

 Reparameterize & clip
 similar to ambush

 modify global parameters to drawing
 redraw, but clipped to lens
 best example: scaling

31

Types of lens drawing

 Model-in / model-out
 create new objects and transform them

 transforms of transforms for composition
 very powerful, but…

 cross application is an issue
 incremental update is as issue

32

Lenses in subArctic

 Implemented with special
“lens parent” & lens
interactors

 Input
 Don’t need to modify input dispatch
 Lens may need to change results of picking (only positional is

affected)
 in collusion with lens parent

Lens
Parent

Lens

Root

33

Lenses in subArctic

 Damage management
 Lens parent forwards all damage to all lenses
 Lenses typically change any damage that overlaps them into

damage of whole lens area

34

Lenses in subArctic

 Replace vs. draw-over just a matter of clearing before drawing
lens or not

 Two kinds of output support
 Ambush

 Via wrappers on drawable
 Extra features in drawable make ambush more powerful

 Traversal based (similar to MIMO)

35

Ambush features in drawable

 boolean start_interactor_draw()
 end_interactor_draw()

 called at start/end of interactor draw
 allows tracking of what is being drawn
 drawing skipped if returns false

 allows MIMO effects in ambush
 isolated drawing
 predicate selected drawing

36

Lenses in subArctic

 Also support for doing specialized traversal
 walk down tree and produce specialized output
 can do typical MIMO effects

37

Example: Debugging Lens

Lenses in Swing
 Two things to do:

 #1: Make sure that your lens is drawn over other components

 Easiest way: add a special component as the “Glass Pane” of a JFrame
 GlassPane is hidden by default; when visible, it’s like a sheet of glass over the

other parts of your frame.
 Generally, set a custom component as the glass pane with a

paintComponent() method to cause things to be drawn
 myFrame.setGlassPane(myNewLensPane)

 myNewLensPane.setVisible(true)

 #2 Create your lens class itself

 Extend JCompnoent
 Implement whatever listeners you want to get events for
 Implement paintComponent so that when you draw yourself, you actually

draw components under you (however you want to draw them) -- note that
the lens itself likely won’t have children

38

Swing GlassPane
 Hidden, by default
 Like a sheet of glass over all other parts of the JFrame; transparent unless

you set it to be a component that has an implementation of
paintComponent()
 Don’t actually have to do anything in paintComponent unless you want the

pane itself to be visible

 Useful when you want to catch events or paint over an area that already
contains components
 E.g., deactivate mouse events by installing a class pane that intercepts the

events

39

GlassPane Resources
 Tutorial on how to use the various panes in a JFrame:

 http://java.sun.com/docs/books/tutorial/uiswing/components/rootpane.html

 Example of using glass pane:
 http://blog.elevenworks.com/?p=6

 Another example of using glass panes for graphical overlay:
 http://weblogs.java.net/blog/joshy/archive/2003/09/swing_hack_3_ov.html

40

Making a Lens
 Basically, a specialized component that’s a child of the glass pane

 Output:

 The lens should draw itself (title bar, gizmo to make it go away, its borders)
 Also draw the components in the frame that are under it, although perhaps

not in their original form
 Input:

 Redispatch events to components in the content pane
 May need to tweak their coordinates/details (transform to the new

component’s coordinate system, for example)
 See SwingUtilities.convertMouseEvent(), SwingUtilities.convertPoint(), etc.

41

Lens Resources
 Swing Hacks, hack #56: Create a Magnifying Glass Component
 Blog entry on magic lenses in Swing:

 http://weblogs.java.net/blog/joshy/archive/2003/11/swing_hack_5_a.html

 Lens details from an earlier version of this class:
 http://www3.cc.gatech.edu/classes/AY2001/cs4470_fall/a4.html

 Passing events through to underlying components
 Tweaking component drawing

 SwingUtilities.paintComponent

 Lets you call a component’s paint method on an arbitrary graphics object (e.g.,
one of your own choosing; can disable/reimplement certain functions, look at
the call stack, etc., in drawing)

 Drawing the lens itself
 Consider using JInternalFrame as the base class for your Lens, as you’ll get

some basic window decorations.
42

43

